СОГЛАСОВАНО

Первый заместитель генерального директора — заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов ____2022 г.

Государственная система обеспечения единства измерений

Тахеометры электронные FOIF

МЕТОДИКА ПОВЕРКИ

651-22-064 MΠ

р.п. Менделеево. 2022 г.

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика (далее МП) распространяется на тахеометры электронные FOIF (далее тахеометры), изготавливаемые Suzhou FOIF Co., Ltd., KHP, и устанавливает методы и средства их первичной и периодической поверок.
- 1.2 Необходимо обеспечение прослеживаемости тахеометров к государственным первичным эталонам единиц величин посредством использования аттестованных (поверенных) в установленном порядке средств поверки.
- 1.3 В результате поверки должны быть подтверждены диапазоны измерений горизонтальных и вертикальных углов, диапазон измерений расстояний, среднее квадратическое отклонение измерений углов, значения абсолютной погрешности измерений углов и расстояний не должны превышать нормированные пределы.

По итогам проведения поверки должна обеспечиваться прослеживаемость тахеометров:

- к государственному первичному специальному эталону единицы длины ГЭТ 199-2018 по государственной поверочной схеме для координатно-временных средств измерений, утвержденной приказом Росстандарта № 2831 от 29 декабря 2018 г.;
- к государственному первичному эталону единицы плоского угла ГЭТ 22-2014 по государственной поверочной схеме средств измерений плоского угла, утвержденной приказом Росстандарта № 2482 от 26 ноября 2018 г.

Методика поверки реализуется посредством методов прямых измерений.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

2.1 При проведении поверки выполнить операции, указанные в таблице 1.

Таблица 1 – Операции проведения поверки

Howard	Номер раз- дела МП	Обязательность выполнения операций поверки при	
Наименование операции поверки		первичной поверке	периодиче- ской поверке
Внешний осмотр средства измерений	7	да	да
Подготовка к поверке и опробование средства измерений	8	да	да
Проверка программного обеспечения (далее – ПО) средства измерений	9	да	да
Определение метрологических характеристик средств измерений	10	да	да
Определение диапазонов измерений горизонтальных и вертикальных углов, среднего квадратического отклонения измерений углов и максимальной абсолютной погрешности измерений углов	10.1	да	да
Определение диапазона измерений расстояний и максимальной абсолютной погрешности измерений расстояний	10.2	да	да
Подтверждение соответствия метрологическим требованиям	11	да	да

- 2.2 Поверка тахеометров осуществляется аккредитованными в установленном порядке юридическими лицами и индивидуальными предпринимателями.
 - 2.3 Не допускается проведение поверки меньшего числа измеряемых величин.
- 2.4 При получении отрицательных результатов при выполнении любой из операций, приведенных в таблице 1, поверка прекращается и тахеометр признается непригодным к применению.

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 3.1 Поверка должна проводиться в климатических условиях, соответствующих рабочим условиям применения эталонов и поверяемого тахеометра:
 - температура окружающего воздуха от 15 °C до 25 °C в лабораторных условиях;
 - температура окружающего воздуха от минус 20 °C до плюс 50 °C в полевых условиях;
 - атмосферное давление от 90 до 100 кПа;
 - относительная влажность воздуха до 80 %.
 - 3.2 Перед проведением поверки выполнить следующие подготовительные работы:
- проверить комплектность тахеометра, в соответствии с эксплуатационной документацией (далее ЭД);
- проверить наличие сведений о результатах поверки средств измерений, включенных в Федеральный информационный фонд по обеспечению единства измерений;
- тахеометр и средства поверки должны быть выдержаны при нормальных условиях не менее 1 ч.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К проведению поверки допускаются лица с высшим или средним техническим образованием, аттестованные в качестве поверителей в области геодезических средств измерений и изучившие настоящую методику, документацию на тахеометры и эксплуатационную документацию на используемые средства поверки.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПО-ВЕРКИ

5.1 Для поверки применять средства поверки, приведенные в таблице 2.

Таблица 2 - Средства поверки

аолица 2	Средетва поверки			
Номер раздела МП	Метрологические и технические тре- бования к средствам поверки, необ- ходимые для проведения поверки	Перечень рекомендуемых средств поверки		
10.1	Диапазон измерений длин до 5000 м, предел допускаемой абсолютной погрешности (0,2+0,5·10 ⁻⁶ ·L), где L - измеряемая длина в мм	Рабочий эталон 1 разряда, содержащий эталонный базисный комплекс, в соответствии с Государственной поверочной схемой для координатно-временных измерений, утвержденной Приказом Росстандарта от 29 декабря 2018 г. № 2831		
10.2	Диапазон измерений углов от 0° до 360° , доверительные границы абсолютной погрешности (при доверительной вероятности $0,99$) $\pm 0,3''$	Рабочий эталон угла 1-го разряда в соответствии с Государственной поверочной схемой для измерений плоского угла, утвержденной Приказом Росстандарта от 26 ноября 2018 г. № 2482		
10.1, 10.2	Диапазоны измерения влажности от 0 до 99 %, температуры от минус 20 °C до 60 °C, давления от 840 гПа до 1060 гПа; пределы допускаемой погрешности измерений: влажности ± 2 %; температуры $\pm 0,2$ °C; давления ± 3 гПа	Измеритель влажности и температуры ИВТМ-7, мод. ИВТМ-7 М 5-Д, регистрационный номер 15500-12 в Федеральном информационном фонде (вспомогательное средство)		

Примечания:

- 1 Сведения о результатах поверки (аттестации) средств измерений (эталонов), применяемых при поверке, должны быть опубликованы в Федеральном информационном фонде по обеспечению единства измерений.
- 2 Допускается применение средств поверки, не приведенных в рекомендуемом перечне, но обеспечивающих определение (контроль) метрологических характеристик поверяемого средства измерений с требуемой точностью, передачу единицы величины средству измерений при его поверке и прослеживаемость эталонов и средств измерений, применяемых при поверке, к государственным первичным эталонам единиц величин.

6 ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 При проведении поверки необходимо соблюдать:
- требования по технике безопасности, указанные в ЭД на используемые средства поверки;
- правила по технике безопасности, действующие на месте поверки;
- ГОСТ 12.1.040-83 «ССТБ. Лазерная безопасность. Общие положения»;
- ГОСТ 12.2.007.0-75 «ССТБ. Изделия электротехнические. Общие требования безопасности».

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 При внешнем осмотре тахеометра установить:
- комплектность тахеометра и наличие маркировки (заводской номер, тип) путём сличения с ЭД на тахеометр, наличие поясняющих надписей;
- исправность переключателей, работу подсветок, исправность разъемов и внешних соединительных кабелей;
 - качество гальванических и лакокрасочных покрытий;
- наличие и исправность съёмных накопителей измерительной информации или управляющего ПЭВМ (в соответствии с ЭД);
- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики.
- 7.2 Результаты поверки считать положительными, если результаты внешнего осмотра удовлетворяют п. 7.1. В противном случае тахеометр бракуется, дальнейшие операции поверки не производят.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 8.1 При опробовании установить соответствие тахеометра следующим требованиям:
- отсутствие качки и смещений неподвижно соединенных деталей и элементов;
- плавность и равномерность движения подвижных частей;
- правильность взаимодействия с комплектом принадлежностей;
- работоспособность тахеометра с использованием всех функциональных режимов;
- дискретность отсчетов измерений должна соответствовать значениям, указанным в ЭД.

Если перечисленные требования не выполняются, тахеометр признают негодным к применению, дальнейшие операции поверки не производят.

8.2 Результаты поверки считать положительными, если результаты опробования и проверки работоспособности удовлетворяют п. 8.1.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

9.1 Идентификационное наименование и идентификационный номер ПО получить при подключении тахеометра к персональному компьютеру средствами ОС «Windows», основное меню/свойства файла.

Результаты поверки считать положительными, если идентификационные данные (признаки) метрологически значимой части ПО соответствуют приведенным в таблице 3.

Таблица 3 – Илентификационные данные

Идентификационные данные	Значение для модели			
(признаки)	RTS102	RTS332	OTS682	RTS362, RTS010
Идентификационное наиме- нование ПО	FOIF	FOIF	FOIF	AlOSurvey
Номер версии (идентификационный номер) ПО, не ниже	20-08-12	1.1.9.6G	16-11-02	2.2.0.2
Цифровой идентификатор ПО (контрольная сумма исполня- емого кода)	-	1	-	=
Алгоритм вычисления идентификатора ПО		-	-	-

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВ ИЗМЕ-РЕНИЙ

- 10.1 Определение диапазонов измерений горизонтальных и вертикальных углов, среднего квадратического отклонения измерений углов и максимальной абсолютной погрешности измерений углов
- 10.1.1 Для определения диапазонов измерений горизонтальных и вертикальных углов, среднего квадратического отклонения измерений углов и максимальной абсолютной погрешности измерений углов с помощью государственного рабочего эталона единицы плоского угла 1 разряда в диапазоне значений от 0° до 360° для горизонтального угла и от минус 50° до плюс 90° для вертикального угла (далее установка 1 разряда) необходимо выполнить следующие операции:
- определить диапазоны измерений горизонтальных и вертикальных углов поверяемого тахеометра с помощью установки 1 разряда;
- определить среднее квадратическое отклонение и максимальную абсолютную погрешность измерений горизонтальных углов поверяемого тахеометра с помощью установки 1 разряда;
- определить среднее квадратическое отклонение и максимальную абсолютную погрешность измерений вертикальных углов тахеометра с помощью установки 1 разряда.
- 10.1.2 Определение среднего квадратического отклонения и максимальной абсолютной погрешности измерений горизонтальных углов тахеометра с помощью установки 1 разряда.

Среднее квадратическое отклонение и максимальную абсолютную погрешность измерений горизонтальных углов тахеометра определить путем сравнения значений измеренных с его помощью горизонтальных углов с действительными значениями этих углов, заданных установкой 1 разряда в диапазоне от 0° до 360° с шагом 60° .

Проконтролировать климатические условия на месте проведения поверки при помощи измерителя влажности и температуры ИВТМ-7

Установить поверяемой тахеометр на поворотный стол установки 1 разряда. В соответствии с руководством по эксплуатации тахеометр привести в горизонтальное положение в двух плоскостях с использованием его штатных уровней.

Установить зеркало на объектив тахеометра.

Совместить оптическую ось тахеометра с оптической осью автоколлиматора.

Задать угол перемещения поворотного стола. После отработки установкой 1 разряда заданного угла необходимо довести зрительную трубу тахеометра к неподвижно закрепленному автоколлиматору и вновь совместить автоколлимационное изображение (зафиксировать значение горизонтального угла с экрана или лимба тахеометра α_i , а также зафиксировать действительное значение горизонтального угла контрольного направления установки 1 разряда $\alpha_{\text{действ}}$, где i — номер измерения). Исследование угломерных характеристик тахеометра произвести в диапазоне от 0° до 360° с шагом 60°.

Для каждого углового положения провести измерения не менее десяти раз. Результаты измерений записать во внутреннюю память тахеометра и в журнал произвольной формы.

10.1.3 Среднее квадратическое отклонение измерений горизонтальных углов вычислить по формуле (1):

$$S_{\alpha_i} = \sqrt{\frac{\sum_{i=1}^{n} (\alpha_i - \overline{\alpha}_i)^2}{n-1}}, \qquad (1)$$

где

n – количество измерений, выполненных с помощью поверяемого тахеометра в угловом положении:

α_і – значение горизонтального угла, полученное на поверяемом тахеометре;

 $\overline{\alpha}_i = \frac{\sum_{i=1}^n \alpha_i}{n}$ — среднее арифметическое значение результатов измерений углов.

Максимальную абсолютную погрешность горизонтальных углов вычислить по формуле (2):

$$\Delta_{\alpha_i} = \alpha_i - \alpha_{\text{действ}} . \tag{2}$$

где $\alpha_{\text{действ}}$ — значение горизонтального угла, полученное на установке 1 разряда.

10.1.4 Определение среднего квадратического отклонения и максимальной абсолютной погрешности измерений вертикальных углов тахеометра с помощью установки 1 разряда.

Среднее квадратическое отклонение и максимальную абсолютную погрешность измерений вертикальных углов тахеометра определить путем сравнения значений измеренных с его помощью вертикальных углов с действительными значениями, задаваемыми установкой 1 разряда (из состава эталона единицы плоского угла) в диапазоне от минус 45° до плюс 90° в следующих значениях: минус 45°, минус 30°, далее с шагом 30°.

Установить поверяемой тахеометр на поворотный стол установки 1 разряда. В соответствии с руководством по эксплуатации тахеометр привести в горизонтальное положение в двух плоскостях с использованием его штатных уровней.

Установить зеркало на объектив тахеометра.

Совместить оптическую ось тахеометра с оптической осью автоколлиматора.

Задать угол перемещения поворотного стола. После отработки установкой 1 разряда заданного угла необходимо довести зрительную трубу тахеометра к трубе автоколлиматора и вновь совместить автоколлимационное изображение (зафиксировать значение вертикального угла с экрана или лимба тахеометра β_i , а также зафиксировать действительное значение вертикального угла контрольного направления установки 1 разряда $\beta_{\text{действ}}$, где i — номер измерения). Исследование угломерных характеристик тахеометра произвести в диапазоне от минус 45° до плюс 90° в следующих значениях: минус 45°, минус 30°, далее с шагом 30°.

Для каждого углового положения провести измерения не менее десяти раз. Результаты измерений записать во внутреннюю память тахеометра и в журнал произвольной формы.

10.1.5 Среднее квадратическое отклонение измерений вертикальных углов вычислить по формуле (3):

$$S_{\beta_i} = \sqrt{\frac{\sum_{i=1}^{n} (\beta_i - \overline{\beta}_i)^2}{n-1}}, \qquad (3)$$

где

n – количество измерений, выполненных с помощью поверяемого тахеометра в угловом положении;

 β_{i} – значение вертикального угла, полученное на поверяемом тахеометре;

 $\overline{\beta}_i = \frac{\sum_{i=1}^n \beta_i}{n} - \text{среднее}$ арифметическое значение результатов измерений углов.

... Максимальную абсолютную погрешность вертикальных углов вычислить по формуле (4):

$$\Delta_{\beta_i} = \beta_i - \beta_{\text{действ}} \,. \tag{4}$$

где $\beta_{\text{действ}}$ — значение вертикального угла, полученное на установке 1 разряда.

За допускаемое среднее квадратическое отклонение измерений углов поверяемого тахеометра принять максимальное значение среднего квадратического отклонения, рассчитанное по формулам (1) и (3); за абсолютную погрешность измерений углов поверяемого тахеометра принять максимальное значение абсолютной погрешности, рассчитанное по формулам (2) и (4).

10.1.6 Результаты поверки считать положительными, если:

- диапазоны измерений горизонтального и вертикального углов составляет от 0° до 360° и от минус 45° до плюс 90° соответственно;
- значения среднего квадратического отклонения измерений углов составляют не более 2" для модификаций RTS102, RTS332, OTS682 и RTS362; не более 1" для модификации RTS010;
- значения максимальной абсолютной погрешности измерений углов находятся в пределах $\pm 4''$ для модификаций RTS 102, RTS332, OTS682 и RTS362; в пределах $\pm 2''$ для модификации RTS010.

10.2 Определение диапазона измерений расстояний и максимальной абсолютной погрешности измерений расстояний

10.2.1 Определить диапазон измерений расстояний и максимальную абсолютную погрешность путём сличения на эталоне 1 разряда — эталонном базисном комплексе. Проконтролировать климатические условия на месте проведения поверки при помощи измерителя влажности

и температуры ИВТМ-7. Измерить фазовым светодальномером (из состава эталонного базисного комплекса) линии базиса эталонного базисного комплекса во всём диапазоне работы поверяемых тахеометров (не менее 3-х линий). Полученные значения линий считать эталонными. Затем измерить эти же линии поверяемым тахеометром, в соответствии с документом «Тахеометры электронные FOIF. Руководство по эксплуатации» не менее 10 раз. Повторить измерения во всех режимах работы тахеометра.

10.2.2 Абсолютную погрешность измерений расстояний вычисляют по формуле (5):

$$R_{L_j} = L_{i_j} - L_{\text{действ}j} , \qquad (5)$$

где

 $L_{i\,i}$ – полученное значение j-го расстояния i-м приёмом по поверяемому тахеометру;

 $L_{\text{действj}}$ — эталонное (действительное) значение j-го расстояния, полученное с помощью фазового светодальномера.

Максимальным значением абсолютной погрешности измерений расстояний считается максимальное значение абсолютной погрешности измерений расстояний поверяемого тахеометра из полученных по формуле (5).

10.2.3 Результаты поверки считать положительными, если:

- диапазон измерений расстояний составляет:
- от 1 до 3000 м для отражательного режима на одну призму для модификации RTS102; от 1 до 3500 м для отражательного режима на одну призму для модификаций RTS332, OTS682 и RTS010;
- от 1 до 800 м для отражательного режима на светоотражающую плёнку для модификаций RTS102, RTS332 и OTS682; от 1 до 1200 м для отражательного режима на светоотражающую плёнку для модификации RTS010;
- от 1 до 5000 м для режима увеличенной дальности на одну призму для модификаций RTS332, OTS682, RTS010 и RTS010;
- от 1 до 600 м для диффузного режима для модификации RTS102; от 1 до 1000 м для диффузного режима для модификаций RTS102, RTS332 и OTS682;
- значения максимальной абсолютной погрешности измерений расстояний находятся в пределах, вычисленных их выражений:
- $-\pm(2+2\cdot10^{-6}\cdot L)$ мм при использовании отражательного режима на одну призму, $\pm(3+2\cdot10^{-6}\cdot L)$ мм при использовании отражательного режима на светоотражающую плёнку, $\pm(5+3\cdot10^{-6}\cdot L)$ мм при использовании режима увеличенной дальности на одну призму, $\pm(3+2\cdot10^{-6}\cdot L)$ мм при использовании диффузного режима для модификации RTS102;
- $-\pm(2+2,0\cdot10^{-6}\cdot L)$ мм при использовании отражательного режима на одну призму, $\pm(2+2\cdot10^{-6}\cdot L)$ мм при использовании отражательного режима на светоотражающую плёнку, $\pm(5+3,0\cdot10^{-6}\cdot L)$ мм при использовании режима увеличенной дальности на одну призму, $\pm(3+2\cdot10^{-6}\cdot L)$ мм в диапазоне измерений от 1 до 600 м включительно и $\pm(5+2\cdot10^{-6}\cdot L)$ мм в диапазоне измерений свыше 600 до 1000 м включительно при использовании диффузного режима для модификаций RTS332, OTS682;
- $-\pm(1+1,5\cdot10^{-6}\cdot L)$ мм при использовании отражательного режима на одну призму, $\pm(2+2\cdot10^{-6}\cdot L)$ мм при использовании отражательного режима на светоотражающую плёнку, $\pm(2+2,5\cdot10^{-6}\cdot L)$ мм при использовании режима увеличенной дальности на одну призму, $\pm(2+2\cdot10^{-6}\cdot L)$ мм в диапазоне измерений от 1 до 600 м включительно и $\pm(4+2\cdot10^{-6}\cdot L)$ мм в диапазоне измерений свыше 600 до 1000 м включительно при использовании диффузного режима для модификаций RTS362, RTS010, где L измеряемое расстояние ($L_{\text{лейств}}$), мм.

11 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛО-ГИЧЕСКИМ ТРЕБОВАНИЯМ

11.1 Процедура обработки результатов измерений метрологических характеристик приведена в п.п. 10.1.6 и 10.2.3.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1 Результаты поверки тахеометра подтверждаются сведениями о результатах поверки средств измерений, включенными в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца тахеометра или лица, представившего его на поверку, на средство измерений выдается свидетельство о поверке и (или) в паспорт тахеометра вносится запись о проведенной поверке, заверяемая подписью поверителя и знаком поверки, с указанием даты поверки, или выдается извещение о непригодности к применению средства измерений.
- 12.2 Результаты поверки оформить в соответствии с приказом № 2510 от 31.07.2020 г. Министерства промышленности и торговли Российской Федерации.

Начальник отделения НИО-8 ФГУП «ВНИИФТРИ»

Заместитель начальника отделения по научной работе НИО-8 ФГУП «ВНИИФТРИ»

Начальник отдела № 83 ФГУП «ВНИИФТРИ» А.М. Каверин

И.С. Сильвестров

А.В. Мазуркевич